🚧 Coming Soon - This page is under construction
Prerequisites
Placeholder: Before launching an RFT job, ensure you have:- Dataset uploaded to Fireworks
- Evaluator uploaded via Eval Protocol
- Fireworks API key configured
- Sufficient GPU quota
Option A: CLI with Eval Protocol
Placeholder: Complete guide to launching via command lineStep 1: Install Eval Protocol CLI
Placeholder: Installation instructionsStep 2: Authenticate
Placeholder: How to set up API credentialsStep 3: Upload Evaluator
Placeholder: Command to upload your evaluatorStep 4: Create RFT Job
Placeholder: Full command with all options explainedStep 5: Verify Job Created
Placeholder: How to check job statusOption B: Web UI
Placeholder: Complete guide to launching via dashboardStep 1: Navigate to Fine-Tuning
Placeholder:- Go to Fireworks Dashboard
- Click “Fine-Tuning” in sidebar
- Click “Fine-tune a Model”
Step 2: Select Reinforcement Method
Placeholder:- Choose “Reinforcement” as tuning method
- Select base model from dropdown
Step 3: Configure Dataset
Placeholder:- Upload new dataset or select existing
- Preview dataset entries
- Verify format
Step 4: Select Evaluator
Placeholder:- Choose from uploaded evaluators
- Preview evaluator code
- Test on sample data
Step 5: Set Training Parameters
Placeholder: Form showing all parameters with descriptions:- Base model
- Output model name
- Epochs
- Learning rate
- LoRA rank
- Max context length
- Batch size
Step 6: Configure Rollout Parameters
Placeholder: Form for inference settings:- Temperature
- Top-p
- Top-k
- Number of rollouts (n)
- Max tokens
Step 7: Review and Launch
Placeholder:- Review all settings
- Estimated cost/time
- Click “Start Fine-Tuning”
Using firectl CLI (Alternative)
Placeholder: For users who prefer firectl over eval-protocol
Comparing CLI vs UI
Placeholder: Table showing:| Feature | CLI (eval-protocol) | UI | firectl |
|---|---|---|---|
| Speed | Fast | Slower | Fast |
| Automation | Easy | Manual | Easy |
| Parameter discovery | Harder | Easier | Medium |
| Reproducibility | Excellent | Manual tracking | Excellent |
Advanced Configuration
Placeholder: Less common options:- Custom GPU requirements
- Environment URLs for multi-turn
- Checkpoint frequency
- W&B integration
Job Validation
Placeholder: How Fireworks validates your job before starting:- Dataset format check
- Evaluator syntax check
- Resource availability
- Quota limits
Common Errors and Fixes
Placeholder: Error messages you might see:- “Invalid dataset format” → Fix dataset JSONL
- “Evaluator not found” → Re-upload evaluator
- “Insufficient quota” → Request more GPUs
- “Invalid parameter range” → Check parameter bounds
After Launching
Placeholder: What happens next:- Job enters queue
- Resources allocated
- Training starts
- You can monitor progress