curl --request POST \
--url https://api.fireworks.ai/v1/accounts/{account_id}/reinforcementFineTuningJobs/{reinforcement_fine_tuning_job_id}:resume \
--header 'Authorization: Bearer <token>' \
--header 'Content-Type: application/json' \
--data '{}'{
"dataset": "<string>",
"evaluator": "<string>",
"name": "<string>",
"displayName": "<string>",
"createTime": "2023-11-07T05:31:56Z",
"completedTime": "2023-11-07T05:31:56Z",
"evaluationDataset": "<string>",
"evalAutoCarveout": true,
"state": "JOB_STATE_UNSPECIFIED",
"status": {
"code": "OK",
"message": "<string>"
},
"createdBy": "<string>",
"trainingConfig": {
"outputModel": "<string>",
"baseModel": "<string>",
"warmStartFrom": "<string>",
"jinjaTemplate": "<string>",
"learningRate": 123,
"maxContextLength": 123,
"loraRank": 123,
"region": "REGION_UNSPECIFIED",
"epochs": 123,
"batchSize": 123,
"gradientAccumulationSteps": 123,
"learningRateWarmupSteps": 123
},
"wandbConfig": {
"enabled": true,
"apiKey": "<string>",
"project": "<string>",
"entity": "<string>",
"runId": "<string>",
"url": "<string>"
},
"outputStats": "<string>",
"inferenceParameters": {
"maxOutputTokens": 123,
"temperature": 123,
"topP": 123,
"responseCandidatesCount": 123,
"extraBody": "<string>",
"topK": 123
},
"chunkSize": 123,
"outputMetrics": "<string>",
"mcpServer": "<string>",
"nodeCount": 123,
"lossConfig": {
"method": "METHOD_UNSPECIFIED",
"klBeta": 123
}
}curl --request POST \
--url https://api.fireworks.ai/v1/accounts/{account_id}/reinforcementFineTuningJobs/{reinforcement_fine_tuning_job_id}:resume \
--header 'Authorization: Bearer <token>' \
--header 'Content-Type: application/json' \
--data '{}'{
"dataset": "<string>",
"evaluator": "<string>",
"name": "<string>",
"displayName": "<string>",
"createTime": "2023-11-07T05:31:56Z",
"completedTime": "2023-11-07T05:31:56Z",
"evaluationDataset": "<string>",
"evalAutoCarveout": true,
"state": "JOB_STATE_UNSPECIFIED",
"status": {
"code": "OK",
"message": "<string>"
},
"createdBy": "<string>",
"trainingConfig": {
"outputModel": "<string>",
"baseModel": "<string>",
"warmStartFrom": "<string>",
"jinjaTemplate": "<string>",
"learningRate": 123,
"maxContextLength": 123,
"loraRank": 123,
"region": "REGION_UNSPECIFIED",
"epochs": 123,
"batchSize": 123,
"gradientAccumulationSteps": 123,
"learningRateWarmupSteps": 123
},
"wandbConfig": {
"enabled": true,
"apiKey": "<string>",
"project": "<string>",
"entity": "<string>",
"runId": "<string>",
"url": "<string>"
},
"outputStats": "<string>",
"inferenceParameters": {
"maxOutputTokens": 123,
"temperature": 123,
"topP": 123,
"responseCandidatesCount": 123,
"extraBody": "<string>",
"topK": 123
},
"chunkSize": 123,
"outputMetrics": "<string>",
"mcpServer": "<string>",
"nodeCount": 123,
"lossConfig": {
"method": "METHOD_UNSPECIFIED",
"klBeta": 123
}
}Bearer authentication using your Fireworks API key. Format: Bearer <API_KEY>
The Account Id
The Reinforcement Fine-tuning Job Id
The body is of type object.
A successful response.
The name of the dataset used for training.
The evaluator resource name to use for RLOR fine-tuning job.
The completed time for the reinforcement fine-tuning job.
The name of a separate dataset to use for evaluation.
Whether to auto-carve the dataset for eval.
JobState represents the state an asynchronous job can be in.
JOB_STATE_UNSPECIFIED, JOB_STATE_CREATING, JOB_STATE_RUNNING, JOB_STATE_COMPLETED, JOB_STATE_FAILED, JOB_STATE_CANCELLED, JOB_STATE_DELETING, JOB_STATE_WRITING_RESULTS, JOB_STATE_VALIDATING, JOB_STATE_DELETING_CLEANING_UP, JOB_STATE_PENDING, JOB_STATE_EXPIRED, JOB_STATE_RE_QUEUEING, JOB_STATE_CREATING_INPUT_DATASET, JOB_STATE_IDLE, JOB_STATE_CANCELLING, JOB_STATE_EARLY_STOPPED, JOB_STATE_PAUSED Show child attributes
The email address of the user who initiated this fine-tuning job.
Common training configurations.
Show child attributes
The Weights & Biases team/user account for logging training progress.
Show child attributes
The output dataset's aggregated stats for the evaluation job.
RFT inference parameters.
Show child attributes
Data chunking for rollout, default size 200, enabled when dataset > 300. Valid range is 1-10,000.
The number of nodes to use for the fine-tuning job. If not specified, the default is 1.
Reinforcement learning loss method + hyperparameters for the underlying trainers.
Show child attributes
Was this page helpful?