curl --request GET \
--url https://api.fireworks.ai/v1/accounts/{account_id}/rlorTrainerJobs/{rlor_trainer_job_id} \
--header 'Authorization: Bearer <token>'{
"name": "<string>",
"displayName": "<string>",
"createTime": "2023-11-07T05:31:56Z",
"completedTime": "2023-11-07T05:31:56Z",
"dataset": "<string>",
"evaluationDataset": "<string>",
"evalAutoCarveout": true,
"state": "JOB_STATE_UNSPECIFIED",
"status": {
"code": "OK",
"message": "<string>"
},
"createdBy": "<string>",
"trainingConfig": {
"outputModel": "<string>",
"baseModel": "<string>",
"warmStartFrom": "<string>",
"jinjaTemplate": "<string>",
"learningRate": 123,
"maxContextLength": 123,
"loraRank": 123,
"region": "REGION_UNSPECIFIED",
"epochs": 123,
"batchSize": 123,
"gradientAccumulationSteps": 123,
"learningRateWarmupSteps": 123,
"batchSizeSamples": 123,
"optimizerWeightDecay": 123
},
"rewardWeights": [
"<string>"
],
"wandbConfig": {
"enabled": true,
"apiKey": "<string>",
"project": "<string>",
"entity": "<string>",
"runId": "<string>",
"url": "<string>"
},
"awsS3Config": {
"credentialsSecret": "<string>",
"iamRoleArn": "<string>"
},
"keepAlive": true,
"rolloutDeploymentName": "<string>",
"lossConfig": {
"method": "METHOD_UNSPECIFIED",
"klBeta": 123
},
"nodeCount": 123,
"acceleratorSeconds": {},
"serviceMode": true,
"directRouteHandle": "<string>",
"hotLoadDeploymentId": "<string>"
}curl --request GET \
--url https://api.fireworks.ai/v1/accounts/{account_id}/rlorTrainerJobs/{rlor_trainer_job_id} \
--header 'Authorization: Bearer <token>'{
"name": "<string>",
"displayName": "<string>",
"createTime": "2023-11-07T05:31:56Z",
"completedTime": "2023-11-07T05:31:56Z",
"dataset": "<string>",
"evaluationDataset": "<string>",
"evalAutoCarveout": true,
"state": "JOB_STATE_UNSPECIFIED",
"status": {
"code": "OK",
"message": "<string>"
},
"createdBy": "<string>",
"trainingConfig": {
"outputModel": "<string>",
"baseModel": "<string>",
"warmStartFrom": "<string>",
"jinjaTemplate": "<string>",
"learningRate": 123,
"maxContextLength": 123,
"loraRank": 123,
"region": "REGION_UNSPECIFIED",
"epochs": 123,
"batchSize": 123,
"gradientAccumulationSteps": 123,
"learningRateWarmupSteps": 123,
"batchSizeSamples": 123,
"optimizerWeightDecay": 123
},
"rewardWeights": [
"<string>"
],
"wandbConfig": {
"enabled": true,
"apiKey": "<string>",
"project": "<string>",
"entity": "<string>",
"runId": "<string>",
"url": "<string>"
},
"awsS3Config": {
"credentialsSecret": "<string>",
"iamRoleArn": "<string>"
},
"keepAlive": true,
"rolloutDeploymentName": "<string>",
"lossConfig": {
"method": "METHOD_UNSPECIFIED",
"klBeta": 123
},
"nodeCount": 123,
"acceleratorSeconds": {},
"serviceMode": true,
"directRouteHandle": "<string>",
"hotLoadDeploymentId": "<string>"
}Bearer authentication using your Fireworks API key. Format: Bearer <API_KEY>
The Account Id
The Rlor Trainer Job Id
The fields to be returned in the response. If empty or "*", all fields will be returned.
A successful response.
The name of the dataset used for training.
The name of a separate dataset to use for evaluation.
Whether to auto-carve the dataset for eval.
JobState represents the state an asynchronous job can be in.
JOB_STATE_UNSPECIFIED, JOB_STATE_CREATING, JOB_STATE_RUNNING, JOB_STATE_COMPLETED, JOB_STATE_FAILED, JOB_STATE_CANCELLED, JOB_STATE_DELETING, JOB_STATE_WRITING_RESULTS, JOB_STATE_VALIDATING, JOB_STATE_DELETING_CLEANING_UP, JOB_STATE_PENDING, JOB_STATE_EXPIRED, JOB_STATE_RE_QUEUEING, JOB_STATE_CREATING_INPUT_DATASET, JOB_STATE_IDLE, JOB_STATE_CANCELLING, JOB_STATE_EARLY_STOPPED, JOB_STATE_PAUSED Show child attributes
The email address of the user who initiated this fine-tuning job.
Common training configurations.
Show child attributes
A list of reward metrics to use for training in format of "<reward_name>=
The Weights & Biases team/user account for logging training progress.
Show child attributes
The AWS configuration for S3 dataset access.
Show child attributes
Rollout deployment name associated with this RLOR trainer job. This is optional. If not set, trainer will not trigger weight sync to rollout engine.
Reinforcement learning loss method + hyperparameters for the underlying trainer.
Show child attributes
The number of nodes to use for the fine-tuning job. If not specified, the default is 1.
Accelerator seconds used by the job, keyed by accelerator type (e.g., "NVIDIA_H100_80GB"). Updated periodically.
Show child attributes
The deployment ID used for hot loading. When set, checkpoints are saved to this deployment's hot load bucket, enabling weight swaps on inference. Only valid for service-mode or keep-alive jobs.
Was this page helpful?